首页> 外文OA文献 >The finite Hankel transform operator: Some explicit and local estimates of the eigenfunctions and eigenvalues decay rates
【2h】

The finite Hankel transform operator: Some explicit and local estimates of the eigenfunctions and eigenvalues decay rates

机译:有限Hankel变换算子:一些显式和局部估计   特征函数和特征值衰减率

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

For fixed real numbers $c>0,$ $\alpha>-\frac{1}{2},$ the finite Hankeltransform operator, denoted by $\mathcal{H}_c^{\alpha}$ is given by theintegral operator defined on $L^2(0,1)$ with kernel $K_{\alpha}(x,y)= \sqrt{cxy} J_{\alpha}(cxy).$ To the operator $\mathcal{H}_c^{\alpha},$ we associate apositive, self-adjoint compact integral operator $\mathcal Q_c^{\alpha}=c\,\mathcal{H}_c^{\alpha}\, \mathcal{H}_c^{\alpha}.$ Note that the integraloperators $\mathcal{H}_c^{\alpha}$ and $\mathcal Q_c^{\alpha}$ commute with aSturm-Liouville differential operator $\mathcal D_c^{\alpha}.$ In this paper, we first give some useful estimates and bounds of theeigenfunctions $\vp$ of $\mathcal H_c^{\alpha}$ or $\mathcal Q_c^{\alpha}.$These estimates and bounds are obtained by using some special techniques fromthe theory of Sturm-Liouville operators, that we apply to the differentialoperator $\mathcal D_c^{\alpha}.$ If $(\mu_{n,\alpha}(c))_n$ and $\lambda_{n,\alpha}(c)=c\, |\mu_{n,\alpha}(c)|^2$denote the infinite and countable sequence of the eigenvalues of the operators$\mathcal{H}_c^{(\alpha)}$ and $\mathcal Q_c^{\alpha},$ arranged in thedecreasing order of their magnitude, then we show an unexpected result that fora given integer $n\geq 0,$ $\lambda_{n,\alpha}(c)$ is decreasing with respectto the parameter $\alpha.$ As a consequence, we show that for $\alpha\geq\frac{1}{2},$ the $\lambda_{n,\alpha}(c)$ and the $\mu_{n,\alpha}(c)$ have asuper-exponential decay rate. Also, we give a lower decay rate of theseeigenvalues. As it will be seen, the previous results are essential tools forthe analysis of a spectral approximation scheme based on the eigenfunctions ofthe finite Hankel transform operator. Some numerical examples will be providedto illustrate the results of this work.
机译:对于固定实数$ c> 0,$ $ \ alpha>-\ frac {1} {2},$有限的Hankeltransform运算符,由$ \ mathcal {H} _c ^ {\ alpha} $表示,由积分运算符给出定义在$ L ^ 2(0,1)$上且内核$ K _ {\ alpha}(x,y)= \ sqrt {cxy} J _ {\ alpha}(cxy)。$给运算符$ \ mathcal {H} _c ^ {\ alpha},$我们关联一个正,自伴随紧致积分算子$ \ mathcal Q_c ^ {\ alpha} = c \,\ mathcal {H} _c ^ {\ alpha} \,\ mathcal {H} _c ^ {\ alpha}。$注意,积分运算符$ \ mathcal {H} _c ^ {\ alpha} $和$ \ mathcal Q_c ^ {\ alpha} $与aSturm-Liouville微分运算符$ \ mathcal D_c ^ {\ alpha }。$在本文中,我们首先给出$ \ mathcal H_c ^ {\ alpha} $或$ \ mathcal Q_c ^ {\ alpha}的特征函数$ \ vp $的一些有用的估计和界限。获得这些估计和界限通过使用Sturm-Liouville算子理论的一些特殊技术,我们将其应用于微分算子$ \ mathcal D_c ^ {\ alpha}。$ if $(\ mu_ {n,\ alpha}(c))_ n $和$ \ lambda_ {n,\ alpha}(c)= c \,| \ mu_ {n,\ alpha}(c)| ^ 2 $表示运算符$ \ mathcal {H} _c ^ {(\ alpha)} $和$ \ mathcal Q_c ^ {\ alpha},$的特征值的无限且可数的序列,按其大小的降序排列,则显示对于给定的整数$ n \ geq 0,$ $ \ lambda_ {n,\ alpha}(c)$相对于参数$ \ alpha。$减小的意外结果。结果表明,对于$ \ alpha \ geq \ frac {1} {2},$ \ lambda_ {n,\ alpha}(c)$和$ \ mu_ {n,\ alpha}(c)$具有超指数衰减率。同样,我们给出这些特征值的较低的衰减率。可以看出,先前的结果是用于基于有限汉克尔变换算子的本征函数分析频谱近似方案的基本工具。将提供一些数值示例来说明这项工作的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号